Penalized wavelet monotone regression

نویسندگان

  • Anestis Antoniadis
  • Jéremie Bigot
چکیده

In this paper we focus on nonparametric estimation of a constrained regression function using penalized wavelet regression techniques. This results into a convex optimization problem under linear constraints. Necessary and sufficient conditions for existence of a unique solution are discussed. The estimator is easily obtained via the dual formulation of the optimization problem. In particular we investigate a penalized wavelet monotone regression estimator. We establish the rate of convergence of this estimator, and illustrate its finite sample performance via a simulation study. We also compare its performance with that of a recently proposed constrained estimator. An illustration to some real data is given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Penalized Estimators in Cox Regression Model

The proportional hazard Cox regression models play a key role in analyzing censored survival data. We use penalized methods in high dimensional scenarios to achieve more efficient models. This article reviews the penalized Cox regression for some frequently used penalty functions. Analysis of medical data namely ”mgus2” confirms the penalized Cox regression performs better than the cox regressi...

متن کامل

Information criteria for Firth's penalized partial likelihood approach in Cox regression models.

In the estimation of Cox regression models, maximum partial likelihood estimates might be infinite in a monotone likelihood setting, where partial likelihood converges to a finite value and parameter estimates converge to infinite values. To address monotone likelihood, previous studies have applied Firth's bias correction method to Cox regression models. However, while the model selection crit...

متن کامل

Penalized Bregman Divergence Estimation via Coordinate Descent

Variable selection via penalized estimation is appealing for dimension reduction. For penalized linear regression, Efron, et al. (2004) introduced the LARS algorithm. Recently, the coordinate descent (CD) algorithm was developed by Friedman, et al. (2007) for penalized linear regression and penalized logistic regression and was shown to gain computational superiority. This paper explores...

متن کامل

Regularization of Wavelet Approximations

In this paper, we introduce nonlinear regularized wavelet estimators for estimating nonparametric regression functions when sampling points are not uniformly spaced. The approach can apply readily to many other statistical contexts. Various new penalty functions are proposed. The hard-thresholding and soft-thresholding estimators of Donoho and Johnstone are speciŽ c members of nonlinear regular...

متن کامل

Estimation of smooth regression functions in monotone response models

We consider the estimation of smooth regression functions in a class of conditionally parametric covariate-response models. Independent and identically distributed observations are available from the distribution of (Z,X), where Z is a real–valued covariate with some unknown distribution, and the response X conditional on Z is distributed according to the density p(·, ψ(Z)), where p(·, θ) is a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005